行业新闻你的位置:主页 > 行业新闻
海水中铀的蕴藏量超40亿吨,相当于陆地铀矿储量的一千倍,从海水中有效提取铀将助力我国核工程领域长久发展。然而,由于海水中的铀浓度相对较低(~3.3 ppb),因此,开发出选择性好、吸附容量高、可重复使用的海水提铀吸附剂尤为重要。
固有微孔聚合物因其高比表面积与丰富的吸附位点在吸附领域具有广阔前景,然而微孔内较高的传质阻力常导致离子扩散受阻,表现出的吸附性能不足。自然界中存在大量分形结构,如动物血管、植物导管等。这些分形结构可以以最小的能量消耗在最大程度上实现物质交换与传递。受此启发,将分级多孔结构引入吸附剂内部,可以有效解决离子在三维无序的微孔内扩散受阻的问题。
中国科学院理化技术研究所研究员闻利平课题组开发出基于固有微孔聚合物的仿生分级多孔吸附膜。其中逐级递减的孔径结构允许铀酰离子在膜内快速扩散,进而充分利用微孔内丰富的吸附位点。测试表明该分级多孔膜可以将吸附容量提升至原来的20倍。此外,该膜也在天然海水中进行了为期四周的吸附测试,结果显示其吸附容量达到9.03mg/g。该工作提出的微结构设计方案可以同时推广到一大类微孔聚合物吸附剂设计中,以实现核能原料的可持续提供。
原文链接:https://www.xianjichina.com/news/details_285359.html
来源:贤集网
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 上一篇:生物可降解塑料推广与普及、面临的挑战 下一篇:聚烯烃产业高端化方向何在?
固有微孔聚合物因其高比表面积与丰富的吸附位点在吸附领域具有广阔前景,然而微孔内较高的传质阻力常导致离子扩散受阻,表现出的吸附性能不足。自然界中存在大量分形结构,如动物血管、植物导管等。这些分形结构可以以最小的能量消耗在最大程度上实现物质交换与传递。受此启发,将分级多孔结构引入吸附剂内部,可以有效解决离子在三维无序的微孔内扩散受阻的问题。
中国科学院理化技术研究所研究员闻利平课题组开发出基于固有微孔聚合物的仿生分级多孔吸附膜。其中逐级递减的孔径结构允许铀酰离子在膜内快速扩散,进而充分利用微孔内丰富的吸附位点。测试表明该分级多孔膜可以将吸附容量提升至原来的20倍。此外,该膜也在天然海水中进行了为期四周的吸附测试,结果显示其吸附容量达到9.03mg/g。该工作提出的微结构设计方案可以同时推广到一大类微孔聚合物吸附剂设计中,以实现核能原料的可持续提供。
原文链接:https://www.xianjichina.com/news/details_285359.html
来源:贤集网
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 上一篇:生物可降解塑料推广与普及、面临的挑战 下一篇:聚烯烃产业高端化方向何在?